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SHOCK WAVE DIFFRACTION AT NORMAL INCIDENCE ON THE FREE SURFACE 
OF LIG'UID CONTAINING A WEDGE WITH ITS T,IP AT THE INTERFACE* 

K.A. BEZHANOV 

Normal incidence of a plane shock wave in gas on the free surface of a compressible 
liquid, its reflection and diffraction are considered in the case when the liquid 
occupies a part of the lower half-plane, while the other is taken by a wedge whose 
tip is at the unperturbed interface. In a particular case one of the wedge sides 
can coincide with the free surface level line or be at a nearly straight angle to 
it. Owing to the problem linearity, the flows of liquid and gas are considered sep- 
arately, viz. the flow of liquid is determined by the pressure behind the shockwave 

reflected from the solid /wedge/ wall, and the obtained form of the free surface 

determines the perturbed gas flow /l/. 

The problem of irregular interaction between the shock wave and the liquid free surface 

was considered in /l/, and the shock wave reflection from a corner with a nearly straight tip 

angle and that of motion of a piston in the form of a dihedral angle close to a straight one 

were considered in /2/ and /3/, respectively. 

1. Statement of the problem. Let a plane shock wave of arbitrary intensity propag- 

ate through a quiescent gas and come in contact at the initial instant of time with the free 

surface of a liquid of considerably higher density than that of gas. A weak diffracted com- 

pression wave then propagates through the liquid, and a shock wave is reflected into the gas. 

If the liquid contains a wedge with its tip at the unperturbed gas-liquid interface, the pat- 

tern of interaction between the diffraction zones in the liquid and gas becomes more complex 

(Fig.1). As the basic unperturbed gas parameters we take the parameters behind the shockwave 

reflected from the wedge wall, viz. pressure P, density R,, and the speed of sound a,; in 

the liquid we have density R, and the speed of sound a, 141. The problem is linear owingto 

the smallness of parameter E=H,IR~. and pressure perturbations in physical variables (X. k’, 2) 
satisfy the wave equation which, after passing to self-similar coordinates .r .= X : (n,!), y = 

Y,'(a,t) (i = .I. 2), assume the form of equations 

(1 - r%,, - Bryp,,* (1 - Y?P"" - 2% - 2YP" = U (1.1) 

which inside the unit circle is of the elliptic type and outside it of the hyperbolic type. 

Outside the diffraction region the flow of liquid is piecewise constant, as can be check- 

ed by the method of Bmirnov-Sobolev /5/. In the diffraction region we obtain a simple in- 

homogeneous Hilbert problem for an analytic function whose real part represents pressure pert- 

urbation. Having determined the pressure, we obtain the form of the liquid free surface. 

Outside the diffraction region the gas flow varies in regions bounded by the characteris- 

tics issuing from points Ii and H', by the shock wave, arcs of the Mach circle, and by the 

liquid free surface. It is determined by the method of Smirnov-Sobolcv. In remaining regions, 
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where the perturbations induced by the wedge in the liquid do not propagate, and the flow is 
determined by the shock wave reflection from the interface of the two media /6/. In the dif- 
fraction zone we have the inhomogeneous Hilbert problem for the complex derivativeofpressure, 
whose solution is obtained in explicit form. 

Since solution of the problem ingas is determined solely by the second derivative of the 
free surface form, the notation for these two media can be the same. Branchesofthemultiple- 
valued functions that occur below are understood to be those that are positive for positive 
values of their arguments. 

2. Solution in regions occupied by the liquid. The fluid diffraction motion is 
induced by the wedge from which issue variable perturbations concentrated inside the Mach 

circle whose center is at the wedge tip, The weak wave that penetrates the liquid is reflect- 
ed by the wedge walls and is tangent to arcs of the Mach circle for angles of inclination 

--n/2<&.<---n/4 and -%~/4<8~~<-_n/2 of the right- and left-hand walls, respectively. Pres- 

sure behind the reflected wave is equal 2P. When -nf4<eL < 0(--n < ec < -3x14) the refelect- 
ed wave reaches the free surface and is reflected from it as a rarefaction wave onto the Mach 
circle arc with a jump of Pin conformity with the boundary condition of pressure constancy 
on the free surface. In the considered here approximation the fronts of compression and rare- 
faction waves coincide with the characteristics of Eq.tl.1). Thus outside diffraction region 
the pressure is a piecewise-constant function , and the boundaries of regions of contant pres- 
sure pass over weak compression and rarefaction waves at which pressure jumps are equal p_ 
The rarefaction jumps are, obviously, the result of linearization of equations of gasdynamics. 

Passing in Eq.cl.1) in regions OLH and OL'H' to polar coordinates (r,B) and applying 
Chaplygin's transform 

we reduce it to the Laplace equation. We introduce in the plane : = p&e= 5 + iv the analytic 
function Q,(i)=p + iv and the formula for complex velocity /l/ 

where rp is a harmonic function conjugate of p , and the arrows imply here and subsequently 
equality, apart the notation. We now obtain for function O(c) the following boundary value 
problem in sectors OLH and OL'H 

p=p, rl -o,o<~:I~=o, e=eL, o<p<i 

P = 16 (e, - e) + iip, P = 1, eL < e < 0 
p=~, rl=o, -1<5<orp=o, e=eLcr o<p<i 

(2.2) 

p = f6 (e - e,) + i]p, p = 1. --n <e < eLg (2.3) 

where 0, and i3* are angles of tangency of reflected compression or rarefaction waves that cor- 
respond to points K and K’, and 9 is the Heaviside function. Below we present the solutions 
of boundary value problems in combined form with the superscript and i=l corresponding to 
sector OLM, and the subscript and j= 2 to sector OL’,%F. 

Function 

maps sectors OLM and OL'&i' onto the upper half-plane and the substitution rf, (w) = f/lfo 
Y((o)enables us to reduce (2.21 and (2.3) to the Dirichlet problem for ReY(o). When --CO <o 

<l-m 

ReY(o)=~2~(~o~crj)+B[(liU)(~o~Uj)l}~ 
0 

Oj=T t@flj, a,=--*, x (n + 0,) 
L az= Z(n+O,,) 

where oi correspond to points K and K’. Representing the solution of the Dirichlet problem 
in terms of the Schwarz integral we finally obtain 
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Distribution of the vertical velocity component at the interface and the shape of free 
surface y: f(t) are determined using the following differential equations 

u’ (I) = -z-l r/1-_ Jz (0’ (2). u (_tl) = -L" (2.4) 
21' (2) - I(z) = --v (I), /(+I) = -_.vO 

o(*)=+:+ln 
l+(fE)"'+2coscrj (fr;)*l'* 

21 
i+(ff)"j -2coSaj (f$il' ’ ==l+t’ 

From (2.4) we obtain asymptotic formulas for u(t) and f(z) in the coordinate origin 
neighborhood with &# --n/4 and &., # -3x1.4 

u(z)-u(O)- 
4Pll*WSCLj 

” 11-l 

n(n,-2)2”j1* 
(f4’ , nj> 2 

f(z)---1(O) + 
SPJlj cm aj n I l--1 (+-4 J 

n(nj-2)(nj-4)2+ - 

(2.5) 

and for I&,= --n/4 and 0,,= -_3n/i we have the solution of problem (2.4) 

U (2) = V (0) F 2nT1Parc sin 2, u (0) = f (0) = P - u. 

f (2) = f (0) f 2n-'P (2 In I 2 I - 2 In (1 + VI-+‘) - arc sins] 

(2.6) 

In conformity with (2.5) and (2.6) there is always a rise of points of the free surface 
over the unperturbed level in the neighborhood of the coordinate origin, which can be explain- 
ed by the compressing action of waves reflected from the wedge walls. When the wedge is posi- 
tioned symmetrically relative to the OY axis, function f(t) at point z = 0 is continuous and 
1' (x)is discontinuous, while in the unsymmetric case f(z) is discontinuous at point 5:~ 0. 

When - n/4<,8~ < 0 and -n <e,,< -31~14 the left-and right-hand derivatives f'(f0) are bound- 
ed, and when --n/2< BL < -n/4 and - 3nl4 < f)~,< -n/2 , we havef' (&Cl) = -~~,whichis explained 
by the considerable pushing effect of reflected waves. Hence r(t) can containinthesymmetric 
case singular generalized functions of the form 6(.r).(--z)_" and z+=, in the unsymmetric caseof 
the form 6' (2). (-t)_" and z+~, where a > -2, 6 (z)is the delta function and 6'(z) its derivat- 
ive, and(--t)_O, Z+O represent the regularization of functions with power singularities /a/. 

3. The flow of gas outside the diffraction region. Transform n=arccosr-',r>l 
reduces Eq.(l.l) to the wave equation pIllr- pee=0 whose characteristics are half-tangents to 
the Mach circle and oriented in various directions /5/. To formulate boundary conditions we 
pass to the system of coordinates Ot'y' turned by angle n/2 relative to Ozy (in what follows, 
primes at x' and y' are omitted). 

In regions FHG and F’H’G’ we seek a solution of the form p =xj(p&e) (j= 1,x), where 
the superscript and the first index relate here and subsequently to region BHGC and the sub- 
script t0 region AH'G'D. The arbitrary functions xi are determined using the conditions at 

the interface 

PI (0. Y) = Yy’ (-Y). YF < Y ;,’ YH, YF’ < Y < YW (?.1! 

where 1(-y) is the gas-liquid interface, and when one of the wedge walls is at a small angle 
to the unperturbed free surface or coincides with it, it also defines the gas-wall interface. 

The final solution is of the form 

110 

T 

p,= arccosy,' 

P= coee~~h~(~cosech)Llh ,,?= arccos!,;? 
P/PM y,, - --- y,,. := (1: 1 (I, 

In regions CEFC; and L)E'F'G' we seek a solution of the fOrTa P = Zj (P&e) + %l()rTe) (17 
3,4),where functions XJ are known from the solution in regions FHG and F'H'G'. and XI is deter- 
mined by the condition at the shock wave 
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mlap, + [mByeL + (m -)- A)$lpV = 0, 2 = m 
BP-&i fi_Yi' W-l 

A==_’ 2 (~~-i)w+z ’ 
.r~~~, 

“0 

TM=+, ml0 = 1 - ma 

(3.2) 

where CT is the velocity of the shock wave reflected from the /wedge/ solid wall, V and a* 
are, respectively, the stream velocity and the speed of sound behind the incident shock wave, 
and y is the specific heat ratio. 

The final solution is of the form 

(3.3) 

c (h) = (1 - m co9 h)lm(w* + @sin* b - (m -j- A)(1 - m cos I.)*1 
D (li) = (m - eos W(l -t m-4)(1 - m cos A)* - mV3 sin' hl 
g(h) = ml-* coeec h (1 + ma - Zm cos It) 
pJ = arc cos YE-', II, -7 arc cos ye.-* 

In regions BFE and AF'& the solution is of the form (3.3). 
The form of the shock wave I = m i-+(y) in sections CG and IX' is determined by the solu- 

tion of the Cauchy problem for Z= m 

y$’ (y) - 9 (y) = -BM,-lp (y), lp (Y,) = mfl-‘P (YI) (i = 19 2) 

where p (yl) = p (yz) is taken from /6/ with y, = ye, y, = ye, M, = V/a,. 

4. The flow of gas in the diffraction region. The diffraction region is bounded 
by the shock wave, two arcs of the Mach circle, the liquid free surface and, possibly, by one 
of the wedge walls. The condition at the interface is of the form (3.1) for -1 'y< 1, and 
the presence of multiplier yz cancels all singularities at I"(-$). For --ml <Y <m, the 
condition at the shock wave is of theform (3.2). 

The boundary condition at arcs of the Mach circle, obtained from (3.3), is 

where 
j&j (1, e) = c (rr), --n/2 .( tl < ec, eu < e : n/2 

Besides it, two integral conditions which specify smoothness of the shock wave front at 
points C and 0 and the pressure change along CD by the given quantity 

(4.1) 

must be satisfied. In (4.1) $r (ml), t&(-mI),~c, pn are known from the solution in regions 
BHGCand ADG’H’, and pc and p. represent the pressure at points C and 13. 

After passing to polar coordinates and application of transform (2.1), Eq.fl.1) assumes 
the form of the Laplace equation. The diffraction regions are represented by a curvilinear 
orthogonal quadrangle of the 5 plane, bounded by arcs of circle@ = p(8), -8X <13 x0,), {p = 1, 
--ni~ : 8 < -et}, tp = 1, e1 < e < ni3j and the straight line segment (2 =(j, -1 < tl< 1). 
Boundary conditions for the normal and tangent derivatives of pressure are of the form 

ep, + bps = c 
a = a (e), b = b (O), c = 0, p = p (O), Bc < 0 < BD 

(4.2) 

a = 0, 6 = 1, c = c (0), p = 1, --n/2 < 9 < Bc 
a=O,b =I, c=e(@), p= I, eD<e<n/Z 
a = 1, b = 0, c = c,, (e), E = 0, --I < q < 1 

where 
a (0) = f/2 - m*sec*fI, b (fl) = Bctee - mA tg0, 
0, = arccosnL 
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IE is the normal, and the orientation of (a,~) coincides with that of (2, y). 

Let us map the region outlined by the curvilinear quadrangle of the < plane onto the II.- 
terior of the rectangle (O< CJ < co, O< t<n) of the plane CO = a + iT 

and introduce the analytic function W (0) = p. - ip,. 
The boundary condition (4.2) then assumes the form of the Hilbert problem 

alp, - 0, = d 
a, = a, (r), b, = 6, (t). d = 0, u = ~0, 0 < t < n 
a, : 1, b, = 0, d = d_ (a), T =: 0, 0 < u < ~0 

a, = 1, b, = 0, d = d, (u), T 2 n, 0 < u < ui, 
a, = 1, b, = 0, d = d, (Al, u = 0, 0 < 7 < n 

where 

a~(r)=-&sin27, bI(7)=-$-R---ncos~t, 

d,(~) = cos* zf” (cos 7) 

CI (0) ~-y ch (00 - u)lm (ml2 -t B) - ml2 (m f A)chz ((I~ - u)] 
D, (0) = sh (0, - a)lqz (1 $ mA)ch* (ua - u) - map] 

In the new variables conditions (4.1) assume the form 

(4.3) 

We map the rectangle of plane o onto the upper half-plane of plane 1(‘ , using function 

6, (0, cl) 6s (- (0, 4 1 - m 
"= fj,(0,q)6a(-iio,q) ’ ‘= I+m 

where 6,,fi1,6,,@, are elliptic theta functions /9/. The intervals (-m.-II and (1, 1~) 

correspond to the shock wave, mdO<k<l where k isthe modulus of the elliptic integral, cor- 

responds to the wall (--k,k). The index of the obtained Hilbert problem with discontinuous 

coefficients in the class of functions integrable at points IO --z &-I, is equal 'unity. 

TO determine the canonical function we represent it in the form /2,3,10/ 

% (10) =- z, (ID)Z, ((I) 

where 

G(w) = &fy=i 93 (0, 9) 63 (- IW, 9) 
lY*(o%9)6r(--iw,q) 

has a piecewise constant argument at the boundary and eliminates discontinuities at coints 

LO y= +I, and %,: (II!) , satisfies the condition on the image of the shock wave, and is of the 

form /2/ 

Solution of the Hilbert problem has then the form /11,12/ 

(4.4) 

where the imaginary constants A, and 4, are determined by conditions (4.3). 
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Having determined pressure distribution at the shock wave front, using (4.41, we obtain 
its form on section CD with (--ml <y< m,) from the solution of the Cauchy problem 

YIP' (Y) -- li: (Y) - --HM,-'p (y), * (mJ = d',, 

while the fulfillment of conditions (4.3) ensures the continuity of Ii,(y) at point D andsmooth- 
ness at points C and D. 

The pressure distribution at the interface and arcs of the Mach circle which are obtain- 
ed by integrating the limit values (4.4), has no singularities, as in /2/. The absence of 
singularities is mathematically explained by the shift-free argument of the second derivative 
of the interface form, owing to which the right-hand side of the boundary condition (3.1) is 
a regular generalized function in the neighborhood of the wedge tip. The absence of shift of 
the second derivative of the interface is related to the absence of a stream parallel to the 
unperturbed level of the liquid free surface. Such stream induces pressure peaks at pointsof 
break and discontinuity of the boundary,which give rise to singularities in linear problems 
/1,3,10/. The determination of pressure distribution at the interface enables us to find the 
solution in the region occupied by the liquid, and to take into account the effect of flows 
on both sides of the wedge. 

REFERENCES 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 
11. 

12. 

BEZHANOV K.A., Irregular interaction of a moving shock wave with a tangential discontin- 
uity. PMM, vo1.41, No.6, 1977. 
LIGHTHILL M-J., Diffraction of blast. Proc. Roy. Sot., Ser. A., V01.200, N0.1063, 1950. 
TESHUKOV V.M., On a particular plane unsteady flow of gas with strong discontinuity. PMTF. 
No.3, 1971. 
STANYUKOVICH K.P., Unsteady Motion of Continuous Media.English translation, PergamonPress, 
Book No. 09320, 1960. 

Die Differential und Integralgleichungen der Mechanik und Pbysik, Vo1.2, Ed. Frank, P. and 
von Mises, R. New York, Dover. 

GUBANOV A.I., Reflection and refraction of shock waves at the interface of two media. Zh. 
Tekhn. Fiz., Vo1.28, No.9, 1958. 

LAVRENT'EV M.A. and SHABAT B.V., Methods of the Theory of Functions of Complex Variable. 
Moscow, NAUKA, 1973. 

GEL'FAND I.M. and SHILOV G.E., Generalized Functions and Operations on them. Moscow, 
FIZMATGIZ, 1958. 

WHITTAKER E.T. and WATSON D.N. A Course of Modern Analysis, Pt. 2, Cambridge Univ. Press, 
1940. 

BEZHANOV K.A., On the theory of diffraction of shock waves. PMM, Vo1.24, N0.4, 1960. 
GAKHOV F.D., Boundary Value Problems. English translation, Pergamon Press, Book No. 10067, 
1966. 

MUSKHELISHVILI N-I., Singular Integral Equations. Moscow, NAUKA, 1968. 

Translated by J.J.D. 


